Apr 182012

Providing appropriate sedation and analgesia to mechanically ventilated patients is of paramount importance in the ICU. Daily sedation interruptions (sedation vacations or sedation holidays) reduce ventilator days and mortality. What else should be done, or avoided?

Treating Pain in Mechanically Ventilated Patients

Untreated pain equates to unnecessary suffering, and treating pain prevents agitation and delirium in mechanically ventilated patients. The problem is figuring out who is in pain, when most patients can't communicate. Many physicians treat all intubated patients for pain with an opioid infusion, but pain is only present in 40% of the severely critically ill during their ICU stays, some studies show, and excessive opioids can prolong mechanical ventilation and ICU stays.

Fentanyl and remifentanyl are the preferred analgesics, as they and their metabolites don't accumulate harmfully in renal failure (unlike morphine and hydromorphone/Dilaudid). The ultra-short acting remifentanyl is metabolized by enzymes in the blood (unlike fentanyl which can accumulate during hepatic failure), but remifentanyl can also rarely result in a strange, paradoxical increased sensitivity to pain (hyperalgesia), and can also wear off quickly, leaving the patient with no analgesia.

Some experts have also advised:

  • When a patient is believed to be in pain, use high bolus doses of opioids preferentially to achieve analgesia (e.g., doses of 100 mcg of fentanyl), while making only small increases (e.g., < 25%) in the basal infusion rate as infrequently as possible.
  • Check the infusion rate on your patient every morning, and after the patient returns from procedures, to see if other professionals have increased the basal infusion rate to reduce movement or agitation. Reduce the opioid continuous infusion rate as much as possible on a daily basis, preferably as part of a sedation interruption protocol.
Sedation in Mechanically Ventilated Patients

Avoid sedation agents and their side effects entirely if possible; analgesics (e.g. fentanyl) may be sufficient to ensure comfort, especially if pain is causing the observed agitation.


  • Benzodiazepines midazolam (Versed) and lorazepam (Ativan) are the most commonly used sedatives, likely due to their lower per-unit cost, although in randomized trials benzodiazepines result in longer time to extubation and discharge, potentially increasing costs overall.
  • Benzos are lipophilic and accumulate in fat, prolonging sedation in obese patients after continuous infusions. Midazolam's active metabolites are renally cleared and accumulate during kidney failure, prolonging sedation. Lorazepam is preferred for patients with impaired renal function; its metabolites are not active.
  • Lorazepam is as effective at achieving sedation and is more cost effective than midazolam, according to one randomized trial. Versed has a faster onset than Ativan.
  • Benzodiazepines suppress respiratory drive, in a shallow-breathing pattern (as opposed to the "deep and slow" respiratory depression from opioids). Benzodiazepines are believed to frequently cause delirium when used for patients in the ICU, especially elderly patients, although the evidence for this is  weak.
  • Benzodiazepine withdrawal is a risk of abrupt discontinuation of infusions after long periods.



  • Propofol reduces time to extubation compared to benzodiazepines, according to multiple randomized trials.
  • Propofol causes hypotension especially with bolus dosing, but this may be minimal or clinically unharmful in volume-replete patients.
  • Monitor triglycerides 1-2 times / week and advise nutrition (since propofol contributes 1.1 kcal/mL) while a patient is receiving a propofol infusion.
  • Propofol infusion syndrome (cardiac failure from sudden bradycardia, metabolic acidosis, hyperkalemia, rhabdomyolysis) appears quite rare in adults receiving usual doses (4-5 mg/kg/hr or less); consider checking pH, lactate, creatine kinase when using propofol for long periods or at high doses.



  • Precedex is an alpha-2 agonist similar to the antihypertensive clonidine, but preferentially binds a subset of receptors causing sedation.
  • Dexmedetomidine does not have respiratory depressant effects unlike most other sedatives, and likely also causes less delirium than benzodiazepines.
  • Because Precedex caused hypotension and bradycardia in higher doses during clinical trials, its FDA approval has thus far been limited to sedation for <24 hours duration.
  • However, a randomized trial in JAMA 2012 demonstrated dexmedetomidine given for longer periods (days) likely reduces time to extubation compared to midazolam and propofol. A withdrawal syndrome after ending longer infusions can include hypotension, tachycardia, and agitation.

When using neuromuscular blocking agents/paralytics (hopefully infrequently), the bispectral index might be helpful in ensuring deep sedation and amnesia. (Others have concluded using the bispectral index isn't reliable, though.)


Sedation Scales, Sedation Vacations

The Richmond Agitation-Sedation Scale (RASS) is the most-validated and most widely-used tool to assess depth of sedation. Titrate almost all patients to a RASS score of -2 or less; very ill or agitated patients (e.g., severe ARDS) may "rarely" require RASS -3 or -4 (according to these authors).

Interrupt sedation completely on a daily basis in all mechanically ventilated patients whenever possible (sedation vacation or sedation holiday). Restart the dose at half the previous rate, if the patient becomes agitated. Sedation holidays have been shown to reduce ventilator days and length of ICU stays.

Pair the daily sedation interruption with a spontaneous breathing trial, when possible. This led to reduced ventilator days and 1 year mortality in a randomized trial.

Daily sedation vacations don't seem to result in psychological harm; in fact, sedation holidays may reduce the incidence of post traumatic stress disorder after critical illness.

A whole-team interdisciplinary strategy with buy-in from nursing, physical therapists, etc is required to ensure an ICU sedation strategy is applied consistently across shifts, staff, and patients. Nurses are ultimately in control of the sedation on an hour-by-hour basis; nursing-driven protocols have reduced sedation doses and improved outcomes in numerous studies.

Delirium in the Mechanically Ventilated Patient

Delirium is common in critically ill patients, and is associated with a variety of worse outcomes (decreased respiratory and functional status, quality of life, and mortality in both the short and long term). However, it is not clear whether delirium causes poor outcomes, or is simply a marker of severe illness. It is also unclear whether interventions that treat or prevent delirium likewise improve outcomes.

Despite the dearth of evidence, reducing delirium seems a worthy goal; authors cite modest evidence that nonpharmacologic measures (reorientation, enhancing the conditions for sleep, reducing benzodiazepines, anticholinergics, and other delirium-causing medicines) can reduce delirium outside the ICU; possibly they work for patients in the ICU as well. Early mobilization, daily sedation interruptions, and daily spontaneous breathing trials have reduced delirium in mechanically ventilated patients in randomized trials.

The best validated tool for assessing delirium, CAM-ICU, has a high specificity but had only 50% sensitivity when tested in a real-world setting. The ICDSC requires more effort and reportedly had higher sensitivity than CAM-ICU in one comparison (But what is the gold standard for validating a test for delirium in critically ill, intubated, noncommunicative patients?)


Antipsychotic drugs are commonly used to treat agitation believed to be due to ICU delirium; Haldol (haloperidol) is probably the most often-used drug. However evidence is lacking for the benefits of antipsychotics in the treatment of ICU delirium. No high quality randomized trials have been done to confirm the benefit of Haldol or other antipsychotics for ICU delirium.

A retrospective study did show lower mortality in haloperidol-treated patients receiving mechanical ventilation, and a randomized trial testing Haldol against Zyprexa (olanzapine) showed reductions in delirium in both groups (neither was superior, there was no placebo arm, and 6 of 45 Haldol-treated patients developed extrapyramidal side effects, compared to none in the olanzepine group).

Due to its tendency to prolong QT intervals and induce torsades de pointes in a tiny fraction of patients, Haldol has carried an FDA black-box warning since 2007. A 1998 retrospective case control study (including 8 cases of TdP) suggested that critically ill patients are at risk for TdP from haloperidol. All antipsychotics can lengthen QT intervals, but Haldol (and thioridazine and droperidol) is most strongly linked to torsades de pointes (28+ cases as of 2007). Still, the Society of Critical Care Medicine recommends haloperidol for treatment of ICU delirium, at level C (the weakest).

Read more:

Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the Intensive Care Unit.  Critical Care Medicine January 2013 • Volume 41 • Number 1

Patel SB, Kress JP. Sedation and Analgesia in the Mechanically Ventilated Patient. Concise clinical review. Am J Respir Crit Care Med 2012;185:486-497.

Puntillo K et al. Evaluation of pain in ICU patients. Chest 2009;135:1069-1074.

Vanderbilt University Medical Center, icudelirium.org


Liked this post? Get a weekly email update, and explore our library of clinical guidelines, practice updatesreview articles. and board review questions.

PulmCCM is an independent publication not affiliated with or endorsed by any other organization, society or journal referenced on the website. (Terms of Use | Privacy Policy)

Authors: contribute your work in a guest post.


Pain control and sedation in mechanically ventilated patients